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Abstract

Various natural and engineered systems, from urban traffic flow to the human brain, can be described by large-scale networked
dynamical systems. These systems are similar in being comprised of a large number of microscopic subsystems, each with
complex nonlinear dynamics and interactions, that collectively give rise to different forms of macroscopic dynamics. Despite
significant research, why and how various forms of macroscopic dynamics emerge from underlying micro-dynamics remains
largely unknown. In this work we focus on linearity as one of the most fundamental aspects of system dynamics. By extending
the theory of mixing sequences, we show that in a broad class of autonomous nonlinear networked systems, the dynamics of
the average of all subsystems’ states becomes asymptotically linear as the number of subsystems grows to infinity, provided that,
in addition to technical assumptions, pairwise correlations between subsystems decay to 0 as their pairwise distance grows to
infinity. We prove this result when the latter distance is between subsystems’ linear indices or spatial locations, and provide
extensions to linear time-invariant (LTI) limit dynamics, finite-sample analysis of rates of convergence, and networks of
spatially-embedded subsystems with random locations. To our knowledge, this work is the first rigorous analysis of macroscopic
linearity in large-scale heterogeneous networked dynamical systems, and provides a solid foundation for further theoretical
and empirical analyses in various domains of science and engineering.

Key words: Large-Scale Complex Systems; Linear/Nonlinear Models; Infinite-Dimensional Systems; Multi-Scale Systems;
Statistical Analysis

1 Introduction

The spatial scale of analysis is a decisive factor in study-
ing large-scale systems, from engineered systems to nat-
ural phenomena, with vast implications for modeling,
system analysis, and control [3,10,12,28,32,39]. In many
large-scale systems, individual microscopic subsystems
exhibit complex, nonlinear dynamics that give rise, of-
ten in ways that we do not fully understand, to qualita-
tively distinct emergent dynamics at the macroscale [15,
19,27,31,41,55]. Therefore, in principle, macroscopic dy-
namics can be studied in hyper-dimensional models with

⋆ A preliminary version of this work appeared at the 61st
IEEEConference on Decision and Control [1]. Corresponding
author Erfan Nozari.
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Ahmed), hahme031@ucr.edu (Hafiz Fareed Ahmed),
erfan.nozari@ucr.edu (Erfan Nozari).

microscopic resolution [40,54]. However, the sheer com-
plexity of this approach often makes it infeasible, lead-
ing many researchers to use linear models as approxima-
tions or local linearizations for studying complex net-
works [22,24,36].

In a recent empirical study [42], on the other hand,
we found linear models to be surprisingly effective–in
fact, seemingly optimal–for capturing the macroscopic
dynamics of large-scale brain networks across hundreds
of subjects and different data modalities. Remarkably,
this linearity appears to be in great contrast to the well-
established theoretical and empirical nonlinearity of in-
dividual neuron dynamics [6, 51]. Nevertheless, this ob-
servation has since been replicated by others [46] as well
as various simulations we have carried [1], and has re-
mained begging for theoretical understanding and a rig-
orous mathematical framework that explains precisely
why and when it holds. The goal of this work is to pro-
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vide such a theoretical foundation for general stochastic
nonlinear systems.

Literature Review

Our initial study [42] further aligns with other recent
observations in large-scale biological [37, 45–47, 52] and
artificial [34, 35, 38] neural networks. In the data-driven
modeling of large-scale brain dynamics linked to elec-
trical stimulation [52] or motor behavior [45], nonlinear
models have repeatedly failed to outperform linear mod-
els, challenging the role and extent of nonlinearity in
large-scale brain dynamics. More recently, it was found
in [46] that nonlinear readouts can indeed improve the
accuracy of predicting behavioral outcomes from neu-
ral recordings, but linear models are as accurate as non-
linear ones in predictive modeling of neural data itself.
Similarly, in structural and functional brain scans, non-
linear models have performed on par with linear ones in
tasks such as age or sex prediction [47], and correlations
between visual stimuli and macroscopic brain recordings
were observed to be linear in [37]. Recent studies also
support linear models in resting-state fMRI analysis,
showing strong performance in neuropsychiatric case-
control comparisons [11], and that resting-state dynam-
ics are explained well by stationary, linear properties of
the data [26]. In the realm of artificial neural networks
(ANNs) with nonlinear activation functions, the linear-
ity of gradient descent dynamics concerning network pa-
rameters has been demonstrated in the limit of infinite
network width [34,38]. Earlier studies [29,35] also estab-
lished asymptotic linearity of ANNs with respect to their
parameters. Collectively, this growing body of evidence
strongly suggests that, counter-intuitively, the collective
dynamics of millions to billions of highly-nonlinear mi-
croscopic elements can in fact be less nonlinear than
each individual subsystem.

In [42], we demonstrated through simulations that spa-
tial averaging can be a key factor in explaining emer-
gent macroscopic linearity. However, this was only sup-
ported by simulations of two neuron models. In the pre-
liminary version of this work [1], we extended our sim-
ulations to more general and complex forms of micro-
scopic nonlinear dynamics, and presented the first math-
ematical proof supporting the conjecture that spatial av-
eraging induces macroscopic linearity in nonlinear sys-
tems. However, this result was shown under the strong
assumption of independent and identically-distributed
(i.i.d.) subsystems, in particular ruling out all forms
of network interactions. The present work extends the
methodology of [1] to systems with heterogeneous sub-
systems and different forms of spatially correlated dy-
namics. Our approach leverages tools from probability
theory [17,23,25,30], particularly the central limit theo-
rem, and incorporates concepts from the theory of strong
mixing sequences [8], which are critical for addressing
the complexities introduced by spatial correlations.

Statement of Contributions

The main contribution of this work is the introduction
of a general theoretical framework that explains the lin-
earizing effects of spatial averaging in populations of
nonlinear dynamical systems. This can be broken into
four sets of technical contributions, as follows. First, we
extend the well-established theory of mixing stochastic
processes in a number of ways, including (i) generalizing
the central limit theorem (CLT) for ρ-mixing sequences
of random variables to multivariate processes, (ii) defin-
ing and theoretically characterizing the notion of a resid-
ual factor for ρ-mixing sequences, and (iii) extending
the definition and properties of ρ-mixing sequences, in-
cluding the CLT, to ρ∗-mixing for spatially-embedded
sequences with fixed as well as random Euclidean loca-
tions. Building on these, our second and main contribu-
tion consists of the mathematical formulation and proof
of the asymptotic linearity of averaged state dynamics
under spatial averaging. We prove this result under two
general settings–with and without spatial embeddings–
and only mild technical restrictions on the form of mi-
croscopic nonlinearity, noise distributions, and network
connectivity patterns. Notably, however, the limit dy-
namics are in general linear time-varying (LTV). Our
third contribution then consists of extending the above
results to scenarios where, under additional stationarity-
related assumptions on the microscopic dynamics, the
spatially-averaged limit dynamics are linear and time-
invariant (LTI). Finally, our fourth contribution pertains
to the finite-sample analysis of the rate at which av-
eraged dynamics converge to linearity. In essence, our
analysis shows that in the extreme case of independent
subsystems (where averaging is most effective), conver-

gence occurs at the parametric rate (O(1/
√
N)), and

the convergence slows down as the correlations between
subsystems strengthen (with the opposite extreme of no
convergence if all the subsystems are perfectly corre-
lated). Notably, among these technical contributions the
only one that existed in our preliminary version [1] is
the third. The first and the fourth sets of contributions
are completely novel, while our second contribution is
now proven under significantly more general conditions–
particularly, interconnected and heterogeneous systems–
whereas its preliminary version was shown only for ho-
mogeneous and disconnected (i.i.d.) subsystems. To our
knowledge, our results provide the first theoretical ac-
count of emergent linearity in complex dynamical sys-
tems, and open the door to a broad range of subsequent
empirical and theoretical studies.

2 Notation

We use R to denote the set of real numbers. For a ma-
trix A ∈ Rm×n, A† ∈ Rn×m denotes its pseudoinverse.
Throughout this work, all probabilities are defined on
measurable spaces consisting of a Euclidean space (or
a subset thereof) and the associated Borel σ-algebra.
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Hence, when clear from the context, the space over which
each probability is defined is omitted. E[·] and P{·} de-
note expectation and probability, respectively. For two
random variables ξ and η, Var(ξ) and ρ(ξ, η) denote
the variance of ξ and the Pearson correlation coefficient
between ξ and η, respectively. For two random vectors
ξ ∈ Rn and η ∈ Rm, Cov(ξ,η) ∈ Rn×m is the covariance
between them, and Cov(ξ) = Cov(ξ, ξ). For sequences

of random variables, we use both
d→ and dlim to denote

their convergence in distribution and
a.s.→ to denote al-

most sure convergence.

3 Preliminaries: Mixing Sequences

In this section we review some fundamental notions and
properties of mixing sequences which form the theoret-
ical basis for the ensuing discussion. In essence, for a
discrete-time stochastic process ξi, i = 1, 2, . . . different
notions of ‘mixing’ characterize the case when the statis-
tical dependence between ξi and ξj diminishes as |i− j|
increases. As such, mixing conditions generalize the no-
tion of a pairwise independent (a.k.a. white) sequence
to one in which nearby elements can be dependent but
their dependence decays as the distance between them
grows. Various versions of mixing sequences have been
proposed, corresponding to different measures of depen-
dence which has to decay with distance. One of the most
practical and empirically verifiable versions is that of ρ-
mixing, as defined next.
Definition 3.1. (ρ-mixing sequence [9]). Consider
a sequence of random variables ξ1, ξ2, . . . in a probability
space (Ω,F ,P) and define

ϱ(n) = sup
i

ρ(σ(ξ1, . . . , ξi), σ(ξi+n, ξi+n+1, . . . )), (1)

where σ(·) denotes the smallest σ-algebra of Ω generated
by a set of random variables, and, for any two σ-algebras
A and B,

ρ(A,B) = sup
|Cov(y, z)|

Var(y)1/2Var(z)1/2
(2)

where the supremum is taken over all pairs of squared-
integrable random variables y and z such that y is
A-measurable and z is B-measurable. The sequence
ξ1, ξ2, . . . is then ρ-mixing if

ϱ(n) → 0 as n → ∞. □

Clearly, any i.i.d. sequence is ρ-mixing and the latter is
a generalization of the former. Thus, many properties of
i.i.d. sequences, such as the laws of large numbers [2,20]
and the central limit theorem (CLT) [18,25], have been
generalized to mixing sequences as long as the decay of
dependence is sufficiently fast. Of particular relevance to

this work is the CLT for ρ-mixing sequences, as presented
below. But we first need a technical definition, as follows.
Definition 3.2. (Slowly-varying function). A func-
tion h : N → R is called slowly varying if

lim
N→∞

h(kN)

h(N)
= 1

for all k ∈ N. □

Intuitively, if h(N) is slowly varying it implies that the
asymptotic behavior of h(N) becomes insensitive to con-
stant multiplicative factors, resulting in a very slow rate
of growth/decay. Some examples of slowly-varying func-
tions are constant functions h(N) = c, logarithm func-
tions such as h(N) = logN or h(N) = log logN , and
bounded functions with nonzero constant limits such as
h(x) = 1 + sin(x)

x .

We are now ready to present the following result, which
is a generalization of the standard CLT for i.i.d. se-
quences [17, Thm 3.4.1] to ρ-mixing sequences of ran-
dom variables.
Proposition 3.3. (CLT for ρ-mixing sequences [25,
Thm B]). Consider a ρ-mixing sequence of random
variables ξ1, ξ2, .... and define its cumulative sum and
cumulative variance as

SN =

N∑
i=1

ξi, σ2
N = Var(SN ). (3)

Assume

E[ξi] = 0 and Var(ξi) < ∞ for all i,

(4a)

sup
M≥0,N≥1

1

σ2
N

E[(SM+N − SM )2] < ∞, (4b)

h(N) =
σ2
N

N
is a slowly-varying function. (4c)

Then

SN

σN

d→ N (0, 1) as N → ∞. □ (5)

It is instructive to compare Proposition 3.3 with the
standard CLT for i.i.d. sequences [17, Thm 3.4.1]. Both
versions assume that all ξi have finite mean and vari-
ance; they slightly differ in that Proposition 3.3 assumes
ξi’s are already mean-subtracted while the standard ver-
sion mean-subtracts the sum. Condition (4b) asks that
the ratio of the variance of shifted partial sums to that
of initial partial sums remains bounded. This is a gen-
eralization of the ‘identically distributed’ assumption in
the standard version, in which case the left hand side
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of (4b) is always 1. Finally, ρ-mixingness is a general-
ization of independence, as noted earlier. Importantly,
however, condition (4c) ensures that the sequence {ξi} is
not any ρ-mixing sequence, but one in which the corre-
lations between neighboring elements decays sufficiently
fast. This is a subtle point and we will get back to it later
in Section 4 when we define residual factors. For now,
note the normalization by σN in (5) vs. the standard

normalization by
√
N for i.i.d. sequences. This differ-

ence stems from the fact that the growth rate of the cu-
mulative variance (σ2

N ) of ρ-mixing sequences can vary,
whereas σ2

N always grows as N for i.i.d. sequences.

In what follows, we will extend Proposition 3.3 in a num-
ber of ways, and use the results to prove the Gaussianity
of joint state-noise distributions under spatial averag-
ing, using which we will prove the linearity of spatially-
averaged dynamics.

4 Linearizing Effect of Spatial Averaging on Se-
quences of Dynamical Systems

4.1 Problem Formulation

Consider a heterogeneous population of N dynamical
subsystems, where each has the general discrete-time
nonlinear form

xi(t+ 1) = fi(xNi
(t),wi(t)), i = 1, 2, . . . N, (6)

x(0) =
[
x1(0)

T · · · xN (0)T
]T

∼ p0,

w(t) =
[
w1(t)

T · · · wN (t)T
]T

∼ pw(t).

xi(t) ∈ Rn is the state of subsystem i with initial joint
distribution p0, and wi(t) ∈ Rm is the noise process of
subsystem i with the joint distribution pw(t). The vector

xNi(t) =
[
xT
max{1,i−τ} · · · x

T
i · · · xT

min{i+τ,N}

]T
(7)

denotes the state of all subsystems on which fi can de-
pend (i.e., a superset of the in-neighbor set of node i).
τ < ∞ can be arbitrarily large, but finite, and controls
the spatial range of neighborhoods, such that subsys-
tems i and j can (but do not need to) be neighbors if
|i− j| ≤ τ .

The problem we tackle in this section, motivated by our
prior empirical observations [42] and those of others [45,
47,53], is as follows.
Problem 1. (Linearizing Effect of Spatial Aver-
aging on Sequences of Dynamical Systems). Con-
sider a heterogeneous population of nonlinear dynamical
systems described by (6), and define the population’s av-

erage state vector as

x̄(t) =
1

ϕ(N)

N∑
i=1

xi(t)− E[xi(t)], (8)

where ϕ(N) is a normalization factor. Prove, under ap-
propriate assumptions and choice of ϕ(N), that the dy-
namics of x̄(t) becomes asymptotically linear asN → ∞.
□

The normalization factor ϕ(N) plays the same role that
σN plays in (5), but it is simpler as it only captures the
growth rate of σN and not σN itself. For comparison, in
the standard CLT ϕ(N) =

√
N for all i.i.d. sequences

while σN varies from one sequence to another. As we
move to multivariate processes (see below) this distinc-
tion will become bolder. A naive extension of (5) would
require computing the exact covariance matrix of SN ,
which often lacks a closed-form solution, as well as nor-
malizing SN by Cov(SN )−

1
2 , which would inter-mix dif-

ferent dimensions and lose the notion of an ‘average’.

In the rest of this section we will first lay the statisti-
cal foundation of our framework in Section 4.2, where
we extend and further characterize the properties of ρ-
mixing sequences. In Section 4.3 we then use this foun-
dation to present our main result of this section, i.e.,
the solution to Problem 1. Under additional stationarity
assumptions, we further strengthen this result to prove
linear time-invariant (LTI) limit dynamics, and finally
characterize the rate of this convergence to linearity in
Section 4.5 for the special case of i.i.d. sequences.

4.2 Multivariate ρ-Mixing Sequences

In this subsection we extend Definition 3.1 to vector-
valued stochastic processes, and then prove some of their
properties, including a more practical CLT. These re-
sults will play a central role in our proof of the lineariz-
ing effect of spatial averaging in Theorem 4.8.

The following is a natural generalization of Defini-
tion 3.1.
Definition 4.1. (Multivariate ρ-mixing sequences).
Consider a sequence of random vectors ξ1, ξ2, · · · ∈ Rq

in a probability space (Ω,F ,P), and define

ϱ(n) = sup
j

ρ(σ(ξ1, . . . , ξj), σ(ξj+n, . . . )), (9)

whereρ(A,B) for two σ-algebrasA andB is defined in (2).
The sequence ξ1, ξ2, . . . is called ρ-mixing if

ϱ(n) → 0 as n → ∞. (10)

Before we can present the generalized CLT for multivari-
ate ρ-mixing sequences we also need the following defi-
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nition. This will help, in particular, in determining the
appropriate normalization factor in Problem 1.
Definition 4.2. (Residual factor). Let ξ1, ξ2, . . . be

a ρ-mixing sequence and SN =
∑N

i=1 ξi. The function
h(N) is called a residual factor for {ξi}∞i=1 if

lim
N→∞

1

Nh(N)
Cov(SN ) < ∞, (11)

i.e., the limit exists and is finite. □

To put this definition in perspective, if {ξi}∞i=1 is i.i.d.
then Cov(SN ) = NCov(ξ1) and so h(N) = 1 is a
residual factor. Note, also, that residual factors are not
unique. In the i.i.d. case, h(N) = c is also a residual
factor for any constant c. Further, note that Defini-
tion 4.2 does not require the limit to be nonzero. Thus,
h(N) = N , log(N), and eN are all valid residual factors
for an i.i.d. sequence. Finally, and related to the last
point, a residual factor always exists for any ρ-mixing
sequence. The following Theorem formalizes this exis-
tence.
Theorem 4.3. (Existence of residual factors). Let
ξ1, ξ2, · · · ∈ Rq be a ρ-mixing sequence and assume that
Var((ξi)ℓ) ≤ σ̄2 for all i, ℓ and some σ̄ < ∞. Then,
h(N) = N is a residual factor for {ξi}∞i=1.

Proof. Let SN =
∑N

i=1 ξi and let ϱ(n) be as in (9). Then,
for any ℓ = 1, . . . , q,

Var((SN )ℓ) =

N∑
i=1

Var((ξi)ℓ) + 2
∑

1≤i<j≤N

Cov((ξi)ℓ, (ξj)ℓ)

≤ Nσ̄2 + 2σ̄2
∑

1≤i<j≤N

ϱ(|i− j|). (12)

Changing the order of summation, we have:

∑
1≤i<j≤N

ϱ(|i− j|) =
N−1∑
k=1

N−k∑
i=1

ϱ(k) =

N−1∑
k=1

(N − k)ϱ(k)

≤ N

N∑
k=1

ϱ(k). (13)

Assume, without loss of generality, that ϱ(x) is defined
and infinitely differentiable for all real-valued x ∈ R>0.
This is without loss of generality since ϱ(n) can always
be replaced by an upper bound that satisfies this as-
sumption and still decays to 0 as n → ∞. Then, using
the Euler–Maclaurin formula [21],

N∑
k=1

ϱ(k) = O
(∫ N

1

ϱ(x)dx
)

(14)

Combining (12)-(14), we get

lim
N→∞

1

N2
Var((SN )ℓ) ≤ lim

N→∞

Nσ̄2

N2
+

2σ̄2C

N

∫ N

1

ϱ(x)dx

(15)

where C is a bounding constant from (14). Limit of the
first term is clearly 0. The second limit has two possibil-
ities. If the non-negative quantity∫ ∞

1

ϱ(x)dx (16)

is finite (ϱ(n) decays fast), then the second limit on the
right hand side of (15) is also clearly 0. If, on the other
hand, the limit in (16) is infinite (ϱ(n) decays slowly),
then by the L’Hopital’s rule and (10), still

lim
N→∞

∫ N

1
ϱ(x)dx

N
= lim

N→∞

ϱ(N)

1
= 0.

Therefore, either way, the limits in (15) are all 0. Since
this is true for all ℓ = 1, . . . , q, we also have

lim
N→∞

1

N2
|Cov((SN )ℓ, (SN )m)|

≤ lim
N→∞

√
Var((SN )ℓ)

N

√
Var((SN )m)

N
= 0,

for all ℓ,m = 1, . . . , q. Put together, limN→∞
1

N2Cov(SN ) =
0, completing the proof. ■

A corollary to Theorem 4.3 is that any h(N) ≥ N is also
a valid residual factor for any ρ-mixing sequence with
uniformly-bounded variance. However, residual factors
are practically useful only when they grow at the same
rate as Cov(SN ) itself and the limit in (11) is nonzero.
This “smallest” residual factor is what we will use in the
sequel, even though the forthcoming results will still be
correct, but not necessarily useful, for all valid residual
factors.

Going back to Proposition 3.3, note also the similar-
ity between (4c) and (11), where h(N) in (4c) is clearly
a residual factor for {ξk}∞i=1 in Proposition 3.3. As we
will see later, whether a residual factor of a ρ-mixing se-
quence is slowly-varying remains to be a critical condi-
tion for validity of CLT (and in turn asymptotic linear-
ity) for that sequence.

To better clarify the notion of a residual factor and how
it depends on the statistics of {ξi}∞i=1, in the follow-
ing result we provide closed-form expressions for “small-
est” residual factors of a few representative ρ-mixing se-
quences.
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Theorem 4.4. (Relationship between decay r of
correlations and growth of residual factors). Let
ξ1, ξ2, · · · ∈ R be a ρ-mixing sequence of random vari-
ables, and let ρ(n) be as in (9). Assume, for simplicity,
that Var(ξi) = σ2 for all i and ρ(ξi, ξj) = ϱ(|i−j|). Then
the following relationships exist, where h(N) is a residual
factor in each case:

(i) if ϱ(n) = 1
n then h(N) = log(N);

(ii) if ϱ(n) = 1
log(1+n) then h(N) = N

log(N) ;

(iii) if ϱ(n) = 1
np , p ∈ (0, 1), then h(N) = N1−p.

Proof. In all cases, let SN =
∑N

i=1 ξi.

(i) Similar to (12) and (13), we have

Var(SN ) = Nσ2 + 2σ2
∑

1≤i<j≤N

1

|i− j|
,

∑
1≤i<j≤N

1

|i− j|
=

N−1∑
k=1

N − k

k
= N

N−1∑
k=1

1

k
− (N − 1).

For large N , the harmonic sum
∑N−1

k=1
1
k is approxi-

mately log(N)+γ, where γ is the Euler’s constant. Thus,
for large N ,∑

1≤i<j≤N

1

|i− j|
≃ N(log(N) + γ)− (N − 1)

= N log(N) + lower order terms,

and

Var(SN ) ≃ Nσ2 + 2σ2N log(N) + lower order terms

= 2σ2N log(N) + lower order terms.

Therefore, for large N ,

Var(SN )

N
≃ 2σ2 log(N) + lower order terms

and so h(N) = log(N) is a residual factor. This is also a
slowly-varying function, since for k ∈ N,

lim
N→∞

h(kN)

h(N)
= lim

N→∞

2σ2 log(kN)

2σ2 log(N)
= 1.

In other words, the correlation decay rate of 1
|i−j| is “suf-

ficiently fast” so that Var(SN ) grows sufficiently slowly
and h(N) becomes slowly varying. As we will see in The-
orem 4.6, this allows for CLT to hold for this sequence.
(ii) Similar to case (i),

Var(SN ) = Nσ2 + 2σ2
∑

1≤i<j≤N

1

log(1 + |i− j|)

and

∑
1≤i<j≤N

1

log(1 + |i− j|)
=

N−1∑
k=1

N − k

log(1 + k)
=

N∑
k=2

N+1−k

log(k)

= (N + 1)

N∑
k=2

1

log(k)
−

N∑
k=2

k

log(k)
. (17)

For large N , this can be approximated (with the same
growth rate) using the Euler-Maclaurin formula [21] as

(N + 1)

∫ N

2

1

log(x)
dx−

∫ N

2

x

log(x)
dx. (18)

By definition,
∫ N

2
1

log(x)dx = li(N)− li(2) where li(u) =∫ u

0
dx

log(x) is the logarithmic integral function. To com-

pute the second integral, we can use the change of vari-
ables u = log(x) and v = 2u so that∫ N

2

x

log(x)
dx =

∫ log(N)

log(2)

eu

u
eudu =

∫ 2 log(N)

2 log(2)

ev

v
dv

= Ei(log(N2))− Ei(log(4))

where Ei(u) =
∫ u

−∞
ex

x dx is the exponential integral

function. Since li(u) = Ei(log(u)), (18) further simplifies
to

N li(N)− li(N2) + li(N)− (N + 1)li(2) + li(4) (19)

For large N ,

li(N) =
N

log(N)

[
1 +O

( 1

log(N)

)]
≃ N

log(N)

Therefore, (19) is approximately equal to

N2

log(N)
− N2

log(N2)
+

N

log(N)
− (N + 1)li(2) + li(4)

=
N2

2 log(N)
+ lower order terms.

Combining these results, for large N we get

Var(SN )

N
≃ σ2 + 2σ2 N

2 log(N)
+ lower order terms

≃ σ2N

log(N)
+ lower order terms.

and so h(N) = N
log(N) is a residual factor. This is not a

slowly-varying function, however, since for k ∈ N,

lim
N→∞

h(kN)

h(N)
= lim

N→∞

σ2kN
log(kN)

σ2N
log(N)

= k.

6



Therefore in this case, unlike case (i), correlations decay
too slowly. As a result, Var(SN ) grow too fast and h(N)
is not slowly-varying. As we will see in Theorem 4.6, this
prevents CLT to hold for this sequence, despite being
ρ-mixing.
(iii) This case falls in between cases (i) and (ii) in terms
of the decay rate of ρ(n). Proceeding as before,

Var(SN ) = Nσ2 + 2σ2
∑

1≤i<j≤N

1

|i− j|p

and

∑
1≤i<j≤N

1

|i− j|p
=

N−1∑
k=1

N − k

kp
= N

N−1∑
k=1

k−p −
N−1∑
k=1

k1−p

Using the Euler-Maclaurin formula, we get for large N ,

N−1∑
k=1

k−p ≃
∫ N−1

1

x−pdx =
(N − 1)1−p − 1

1− p

N−1∑
k=1

k1−p ≃
∫ N−1

1

x1−pdx =
(N − 1)2−p − 1

2− p

Thus, for large N ,

∑
1≤i<j≤N

1

|i− j|p
≃ N(N − 1)1−p

1− p
− (N − 1)2−p

2− p

=
(N − 1)2−p

(1− p)(2− p)
+

(N − 1)1−p

1− p

and so

Var(SN )

N
≃ σ2 +

2σ2

N

[ (N − 1)2−p

(1− p)(2− p)
+

(N − 1)1−p

1− p

]
=

2σ2

(1− p)(2− p)

(N − 1)2−p

N
+ lower order terms.

Therefore, h(N) = N2−p

N = N1−p is a residual factor.
This h(N) is not a slowly-varying function, since for
k ∈ N,

lim
N→∞

h(kN)

h(N)
= lim

N→∞

(kN)1−p

N1−p
= k1−p.

In other words, even the polynomial decay rate of
1

|i−j|p , p ∈ (0, 1) is too slow for h(N) to be slowly vary-

ing and for CLT to hold.
■

In summary, it follows from Theorem 4.4 that ρ(n) ∝ 1
n

is the rough “boundary” between decay rates that are
sufficiently fast and those that are too slow.

Before we are ready to present the generalized CLT for
multivariate ρ-mixing sequences, we need to prove an-
other property of ρ-mixing sequences, namely, that se-
quences formed through transformations of ρ-mixing se-
quences are also ρ-mixing.
Lemma 4.5. (Sequence formed through transfor-
mation of ρ-mixing sequence is ρ-mixing). Con-
sider a sequence of random vectors ξ1, ξ2, · · · ∈ Rq in a
probability space (Ω,F ,P). Let τ, k ≥ 0 be arbitrary fixed
integers and assume that for any i ≥ 1, hi is a measur-
able function from Rqmin{τ+i,2τ+1} to Rk. Define

ζi = hi(ξmin{1,i−τ}, . . . , ξi, . . . , ξi+τ ), i ≥ 1.

If the sequence ξ1, ξ2, . . . is ρ-mixing, then so is
ζ1, ζ2, . . . .

Proof. Without loss of generality let n ≥ τ+1. Then, by
the definition of the σ-algebra generated by a collection
of random variables and the measurability of all hi, we
get

σ(ζ1, . . . , ζj) ⊆ σ(ξ1, . . . , ξj+τ ),

and

σ(ζj+n, . . . ) ⊆ σ(ξj+n−τ , . . . ),

for all j ≥ 1. Therefore, by (2),

0 ≤ ρζ(n) ≤ ρξ(n− 2τ), n ≥ τ + 1. (20)

where ρζ(n) and ρξ(n) are defined as in (1) for the re-
spective sequences {ζi} and {ξi}. The theorem then fol-
lows by letting n → ∞ in (20) and using the mixing
property of {ξi}. ■

The next result extends and improves the CLT in Propo-
sition 3.3 to the case of multivariate ρ-mixing sequences.
Theorem 4.6. (Multivariate CLT for ρ-mixing se-
quence). Let ξ1, ξ2, ... ∈ Rq be a ρ-mixing sequence
where each ξi has zero mean and finite variance. Let
h(N) be a residual factor for {ξi}∞i=1 and assume that it
is slowly-varying. Also, assume that for all θ ̸= 0,

sup
M,N

θTCov
(∑M+N

i=M+1 ξi

)
θ

θTCov
(∑N

i=1 ξi

)
θ

< ∞. (21)

Then, the “mean” variable

ξ̄ =
1√

Nh(N)

N∑
i=1

ξi, (22)
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satisfies

ξ̄
d−→ N (0,Σ∗

ξ̄) as N → ∞, (23)

where (cf. (11))

Σ∗
ξ̄ = lim

N→∞

1

Nh(N)
Cov

( N∑
i=1

ξi

)
. (24)

Proof. Let θ ̸= 0 be an arbitrary constant vector. By
Lemma 4.5, the sequence of random variables {θT ξi}i≥1

is ρ-mixing. Define the cumulative sum and cumulative
variance of this sequence as

SN =

N∑
i=1

θT ξi, σ2
N = Var(SN ). (25)

The sequence {θT ξi}i≥1 follows (4a) by assumption. It
also follows (4b) due to (21). We need to show that it
also satisfies (4c) before we can use the CLT in Propo-
sition 3.3.

Note that

σ2
N = θTCov

( N∑
i=1

ξi

)
θ

so we get

lim
N→∞

σ2
N

Nh(N)
= θTΣ∗

ξ̄θ. (26)

First consider the case where θTΣ∗
ξ̄θ ̸= 0. Using the fact

that h(N) is slowly varying, we have, for any k ∈ N,

lim
N→∞

σ2
kN

kNh(kN)h(kN)

σ2
N

Nh(N)h(N)
=

lim
N→∞

σ2
kN

kNh(kN)

lim
N→∞

σ2
N

Nh(N)

· lim
N→∞

h(kN)

h(N)

=
θTΣ∗

ξ̄θ

θTΣ∗
ξ̄θ

· 1 = 1.

This proves that

h̃(N) =
σ2
N

N
(27)

is slowly varying, and thus σ2
N satisfies (4c). Therefore,

Proposition 3.3 holds and, from (5) and (26), asN → ∞

SN√
Nh(N)

=
SN

σN
· σN√

Nh(N)

d→ N (0, 1) ·
√

θTΣ∗
ξ̄θ

= N (0,θTΣ∗
ξ̄θ) (28)

This means that

θT ξ̄
d→ θT ξ̄

∗
, as N → ∞, (29)

where ξ̄
∗
is a multivariate random variable distributed

as N
(
0,Σ∗

ξ̄

)
.

On the other hand, if θTΣ∗
ξ̄θ = 0 (including when θ =

0), then (29) follows immediately without the need to

use any CLT since θT ξ̄
∗
= 0 and

lim
N→∞

Var(θT ξ̄) = lim
N→∞

σ2
N

Nh(N)

(26)
= θTΣ∗

ξ̄θ = 0.

Therefore, (29) holds for all θ ∈ Rq. According to
Cramer-Wold device theorem [17, Thm 3.9.5], it then
follows that

ξ̄
d−→ ξ̄

∗
as N → ∞, (30)

completing the proof. ■

Theorem 4.6 provides the foundation for the asymptotic
analysis of spatially averaged dynamics formulated in
Problem 1, which we undertake next.

4.3 Asymptotic Linearity Under Spatial Averaging

In this section we use the results in Section 4.2 to tackle
Problem 1. Throughout this section, we make the fol-
lowing assumptions on the population dynamics (6). For
ease of notation, for all i, t let

yi(t) =
[
xi(t)

T wi(t)
T
]T

, (31)

and

zi(t) =
[
xi(t+ 1)T xi(t)

T wi(t)
T
]T

. (32)

Assumption 4.7. (Standing assumptions).

(A1) The noise processes are zero mean and finite-
variance, i.e., there exists C < ∞ such that for all
i and t,

E[wi(t)] = 0 and
∥∥E[wi(t)wi(t)

T ]
∥∥ ≤ C.

(A2) For all θ ̸= 0 and all t,

sup
M,N

θTCov
(∑M+N

i=M+1 zi(t)
)
θ

θTCov
(∑N

i=1 zi(t)
)
θ

< ∞. (33)
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(A3) For each t, all noises {wi(t)}∞i=1 are independent
of contemporaneous states {xi(t)}∞i=1 at the same
time t.

(A4) The functions fi(.) are uniformly bounded, i.e.,
there exists M < ∞ such that for all i,xNi

,wi

||fi(xNi
,wi)|| ≤ M.

(A5) For all t, the sequence of random vectors {yi(t)}∞i=1
in (31) is ρ-mixing with a slowly-varying residual
factor h(N).

The key assumption in Assumption 4.7 is the ρ-mixing
assumption in (A5) which, in essence, prevents global
synchrony. In other words, it prevents a case where all
{yi(t)}∞i=1 are strongly correlated with each other, in
which case averaging does not do much—the average of
{yi(t)}∞i=1 becomes very similar to any one of them.

The remaining 4 assumptions are technical and auto-
matically satisfied in most practical applications. As-
sumptions (A1) and (A2) are parallel to (4a) and (4b) in
Proposition 3.3 and described thereafter. Next, assump-
tion (A3) asks for lack of instantaneous effect, where
each noise variable takes at least one time step before af-
fecting the state. Finally, note that Assumption (A4) is
practically equivalent to uniform boundedness of state-
noise trajectories. If (xNi

,wi) are guaranteed to remain
within a compact region D, as is the case for any real-
world state/noise variable, then fi needs to be bounded
only on D and its value can be replaced by an arbitrary
finite value (say, 0) outside of D without affecting the
solutions of (6). This is true, e.g., if fi is any analytic
function on D.

With the stated assumptions above, we are ready to
characterize the asymptotic spatial aggregate dynamics
of the population of dynamical systems in (6), as follows.
Theorem 4.8. (Linearizing effect of spatial aver-
aging on sequences of dynamical systems). Con-
sider the population dynamics (6), and assume that As-
sumptions (A1)-(A5) hold. Define the population average
variables

x̄(t) =
1√

Nh(N)

N∑
i=1

xi(t)− E[xi(t)], (34)

w̄(t) =
1√

Nh(N)

N∑
i=1

wi(t),

and ȳ(t) =
[
x̄(t)T w̄(t)T

]T
and assume that limN→∞ Cov

(
x̄(t+

1), ȳ(t)
)
exists. Then the relationship between x̄(t + 1),

x̄(t) and w̄(t) becomes asymptotically linear as N → ∞,

i.e., for all ξ ∈ Rn,ω ∈ Rm,

E
[
x̄(t+ 1)

∣∣∣∣
[
x̄(t)

w̄(t)

]
=

[
ξ

ω

] ]
→ A∞(t)ξ +B∞(t)ω

as N → ∞, (35)

where

A∞(t) = Cov
(
x̄∞(t+ 1), x̄∞(t)

)
Cov

(
x̄∞(t)

)†
B∞(t) = Cov

(
x̄∞(t+ 1), w̄∞(t)

)
Cov

(
w̄∞(t)

)†
x̄∞(t) = dlim

N→∞
x̄(t)

w̄∞(t) = dlim
N→∞

w̄(t). (36)

Proof. Fix t, and let zi(t) be as in (32). From (6), As-
sumption (A5), and Lemma 4.5, the sequence {zi(t)}∞i=1
is also ρ-mixing. Since mean-centering preserves correla-
tion coefficients, {zi(t)−E[zi(t)]}∞i=1 is ρ-mixing as well.
The latter sequence is mean-zero by construction and
finite-variance by Assumptions (A4) and (A1). Further-
more, h(N) is a residual factor for both {xi(t + 1)}∞i=1

and
{ [

xi(t)
T wi(t)

T
]T }∞

i=1
, so both of the limits

lim
N→∞

Cov
(
x̄(t+ 1)

)
and lim

N→∞
Cov

(
ȳ(t)

)
exist. Since the limit of the covariance between x̄(t+ 1)
and ȳ(t) also exists by assumption, h(N) is a (slowly-
varying) residual factor for {zi(t)−E[zi(t)]}∞i=1. These,
together with Assumption (A2), satisfy all the require-
ments of Theorem 4.6. Therefore,

z̄(t) =
1√

Nh(N)

N∑
i=1

zi(t)− E[zi(t)] =


x̄(t+ 1)

x̄(t)

w̄(t)


converges in distribution to z̄∞(t) =

[
x̄∞(t+ 1)T x̄∞(t)T w̄∞(t)T

]T
∼

N (0,Cov(z̄∞(t))), where Cov(z̄∞(t)) = limN→∞ Cov(z̄(t)).
This, together with the fact that z̄(t) is uniformly inte-
grable (since it has finite variance), implies convergence
of expectations over these distributions. In particular,
for any ξ,ω,

lim
N→∞

E
[
x̄(t+ 1)

∣∣∣∣
[
x̄(t)

w̄(t)

]
=

[
ξ

ω

] ]

= E
[
x̄∞(t+ 1)

∣∣∣∣
[
x̄∞(t)

w̄∞(t)

]
=

[
ξ

ω

] ]
. (37)

Since z∞ is normally distributed, the right hand side
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in (37) equals

Cov

(
x̄∞(t+ 1),

[
x̄∞(t)

w̄∞(t)

])
Cov

([
x̄∞(t)

w̄∞(t)

])†
[
ξ

ω

]

which simplifies to A∞(t)ξ + B∞(t)ω in (35) because
of the independence of x̄∞(t) and w̄∞(t) resulting from
Assumption (A3). ■

As far as linearity of the limit dynamics is concerned,
it is important to note that the matrices A∞(t) and
B∞(t) in Theorem 4.8 depend on the distributions of
states {xi(t)}∞i=1, {xi(t + 1)}∞i=1 and noises {wi(t)}∞i=1,
but not on their specific values (realizations). In other
words, for any choice of model in (6), i.e., for any choice
of {fi(·)}∞i=1, p0, and pw, the matricesA∞(t) andB∞(t)
can be in theory pre-computed for all t ≥ 0, and would
be the same for all realizations of noises and states gen-
erated by this system. This is important for the dynam-
ics to be actually linear, as illustrated by the following
simple example.
Example 4.9. (LTV vs. nonlinear dynamics).
Consider a dynamical system described by

y(t+ 1) = a(t)y(t), y(0) ∼ N (e, 1)

and three cases, as follows.

(i) a(t) = e2
t

. Here the system is clearly LTV.

(ii) a(t) = y(t). Here the system is clearly nonlinear.

(iii) a(t) = E[y(t)]. Although the system here may look
nonlinear, the coefficient E[y(t)] can be pre-computed for
all t ≥ 0 based only on the distribution of y(0). In fact,

it is straightforward to see that here a(t) = e2
t

, making
this system equivalent to that in (i). □

4.4 Time-Invariant Limit Dynamics

Interestingly, if the dynamics in (6) satisfy additional
assumptions, the average dynamics tend not only to a
linear system but further to an LTI one. For ease of
notation, let

x(t+ 1) = F (x(t),w(t)) (38)

denote the combined dynamics of all sub-systems in (6),
where x(t) ∈ RNn and w(t) ∈ RNm are the concatena-
tions of all states and noises, respectively. We also need
to make additional assumptions, as follows.
Assumption 4.10. (Additional assumptions for
time-invariance of limit dynamics).

(A6) The noise distribution pw(t) ≡ pw is time-
invariant.

(A7) The function F (·) is globally Lipschitz in x, i.e.,
for any w ∈ RNm there exists L(w) ≥ 0 such that

∥F (x1,w)− F (x2,w)∥ ≤ L(w)∥x1 − x2∥, (39)

for all x1,x2 ∈ RNn.
(A8) the initial distribution p0 is such that p0(A) = 0

for any set A where p∗(A) = 0;
(A9) for any setA with p∗(A) > 0, the noise distribution

pw is such that for all x ∈ RNn, P{F (x,w) ∈ A} >
0.

(A10) The sequence {yi(t)}∞i=1 is ρ-mixing uniformly
across time, i.e., supt ϱ(n, t) → 0 as n → ∞,
where ϱ(n, t) is defined as in (10) for the sequence
{yi(t)}∞i=1. □

Assumption (A6) is clearly necessary if we expect (6) to
admit a stationary solution. Assumption (A7), while be-
ing restrictive on the space of all functions, becomes mild
when considering only bounded functions as required by
assumption (A4). Assumptions (A8) and (A9) are tech-
nical and ensure the distributions p0 and pw are well-
behaved. Assumption (A10) is also technical and pre-
vents contrived cases where, e.g., the system gradually
converges to a state of global synchrony.

The next result uses Assumptions (A6)-(A9) to show
the existence and attractivity of stationary solutions,
which will then be used to prove the LTI version of The-
orem 4.8.
Theorem 4.11. (Existence and attractivity of sta-
tionary solutions). Consider the population dynam-
ics in (6) and assume that Assumptions (A1)-(A7) hold.
Then the population has a stationary solution

x∗(t) ∼ p∗, t ≥ 0. (40)

where p∗ is independent of time. If, further, Assump-
tions (A8)-(A9) hold, then x(t) converge to x∗(t) in dis-
tribution as t → ∞.

Proof. The proof is the same as proof of [1, Thm IV.4].
■

Combining the linearity of Theorem 4.8 and the station-
arity of Theorem 4.11 ensures the convergence of the av-
erage population dynamics to an LTI system, as shown
next.
Theorem 4.12. (LTI average population dynam-
ics). Consider the population dynamics (6) and assume
that assumptions (A1)-(A10) hold. Then,

E
[
x̄(t+ 1)

∣∣∣∣
[
x̄(t)

w̄(t)

]
=

[
υ0

ζ0

] ]
→ A∗

∞υ0 +B∗
∞ζ0
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as N, t → ∞, where

A∗
∞ = lim

t→∞
A∞(t), B∗

∞ = lim
t→∞

B∞(t), (41)

and A∞(t),B∞(t) are as in (36).

Proof. By Theorem 4.11 each subsystem xi(t) converges
in distribution to the corresponding stationary solution
x∗
i ∼ p∗i as t → ∞, which are ρ-mixing (in the limit)

by (A10). Define

x̄∗ =
1√

Nh(N)

N∑
i=1

x∗
i − E[x∗

i ],

and let x̄∗
∞ ∼ N (0,Σx̄∗) where Σx̄∗ = Cov(x̄∗). Then

by Theorem 4.6, x̄∗ converges in distribution to x̄∗
∞ as

N → ∞ and, therefore,

dlim
N,t→∞

x̄(t) = dlim
t→∞

x̄∞(t) = x̄∗
∞. (42)

It then follows from (42) that all the time-dependent
covariances in (36) converge to their respective limits
and, hence, so do the matrices A∞(t) and B∞(t). This
completes the proof. ■

Similar to the guaranteed linearity of Theorem 4.8, the
result of Theorem 4.12 is asymptotic and LTI dynamics
are only approached asN and t grow to infinity. In many
real-world systems, however, dynamics settle to station-
ary solutions after only a few time steps. Further, and
more importantly for our discussion, nonlinearities of-
ten vanish rather quickly with averaging. We next focus
on formalizing the latter dimension, namely, the rate of
convergence to linearity under spatial averaging.

4.5 Rate of Convergence to Linearity

In this section we seek to estimate the rate at which
spatially-averaged dynamics converge to linearity. We
have empirically shown that this rate is often rather
fast [1], but rigorous characterizations are missing. The
main result of this section is the following, where we
prove that convergence of conditional expectations (sim-

ilar to (35)) occurs at theO(1/
√
N) rate.We present this

result for the simplest case of i.i.d. sequences of static
random vectors and discuss generalizations afterwards.
Theorem 4.13. (Rate of convergence to linear-
ity). Consider a sequence of N i.i.d random vectors
z1, z2, . . . , zN ∈ Rn+q where, for all i,

zi =

[
xi

yi

]
, xi ∈ Rn, yi ∈ Rq (43)

E[zi] = µz, Cov(zi) = Σz, ∥zi∥∞ ≤ M < ∞.

Let

z̄ =
1

N

N∑
i=1

zi and z∗ =

[
x∗

y∗

]
∼ N

(
µz,

1

N
Σz

)
Then, for any υ ∈ Rq and any δ > 0,∥∥∥E[x̄|ȳ ∈ Bδ(υ)]− E[x∗|y∗ ∈ Bδ(υ)]

∥∥∥ = O
( 1√

N

)
,

(44)

where Bδ(υ) = {y ∈ Rq : ||y−υ|| ≤ δ} is a δ-ball around
υ.

Proof. According to Berry-Essen theorem [43], for any
convex sets U ⊆ Rn+q,

∣∣P(z̄ ∈ U
)
− P

(
z∗ ∈ U

)∣∣ ≤ C√
N

(45)

where C is a constant independent of N . So consider, in
particular, the sets of the form

U =
{
x ∈ Rn|xi ≤ ξ

}
× Bδ(υ)

for any i ∈ {1, . . . , n} and any ξ ∈ R. Plugging this
into (45) we get

∣∣P{x̄i ≤ ξ, ȳ ∈ Bδ(υ)
}
− P

{
x∗
i ≤ ξ,y∗ ∈ Bδ(υ)

}∣∣ ≤ C√
N

.

(46)

Similarly, by plugging U = Rn × Bδ(υ) in (45) we get

∣∣P{ȳ ∈ Bδ(υ)
}
− P

{
y∗ ∈ Bδ(υ)

}∣∣ ≤ C√
N

. (47)

Further, let

ϵ = min
{
P
{
ȳ ∈ Bδ(υ)

}
, P
{
y∗ ∈ Bδ(υ)

}}
> 0. (48)

Combining (46), (47) and (48) we get∣∣∣Fx̄i|ȳ
(
ξ|Bδ(υ)

)
− Fx∗

i
|y∗
(
ξ|Bδ(υ)

)∣∣∣
≜
∣∣∣P{x̄i ≤ ξ | ȳ ∈ Bδ(υ)

}
− P

{
x∗
i ≤ ξ | y∗ ∈ Bδ(υ)

}∣∣∣
=

∣∣∣∣P
{
x̄i ≤ ξ , ȳ ∈ Bδ(υ)

}
P
{
ȳ ∈ Bδ(υ)

} −
P
{
x∗
i ≤ ξ , y∗ ∈ Bδ(υ)

}
P
{
y∗ ∈ Bδ(υ)

} ∣∣∣∣
≤ 2C√

Nϵ2
(49)

where in the latter inequality we used
∣∣a
b − c

d

∣∣ ≤
|d||a−c|+|c||b−d|

|b||d| . Now, using the standard relationship
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between E[X] = −
∫∞
0

FX(x)dx+
∫∞
0

(1−FX(x))dx be-
tween the cumulative distribution function (CDF) and
expected value of any random variable, we can trans-
late the bound on the difference of conditional CDFs
in (49) into a bound on the difference of conditional
expectations, as follows.∣∣∣E[x̄i | ȳ ∈ Bδ(υ)

]
− E

[
x∗
i | y∗ ∈ Bδ(υ)

]∣∣∣
=

∣∣∣∣ ∫ 0

−∞

(
Fx∗

i
|y∗
(
ξ|Bδ(υ)

)
− Fx̄i|ȳ

(
ξ|Bδ(υ)

))
dξ

+

∫ ∞

0

(
Fx∗

i
|y∗
(
ξ|Bδ(υ)

)
− Fx̄i|ȳ

(
ξ|Bδ(υ)

))
dξ

∣∣∣∣
≤
∫ 0

−∞

∣∣∣Fx∗
i
|y∗
(
ξ|Bδ(υ)

)
− Fx̄i|ȳ

(
ξ|Bδ(υ)

)∣∣∣dξ
+

∫ ∞

0

∣∣∣Fx∗
i
|y∗
(
ξ|Bδ(υ)

)
− Fx̄i|ȳ

(
ξ|Bδ(υ)

)∣∣∣dξ
(50)

Note that, because the bound in (49) is independent of
ξ, substituting it directly into (50) will give a useless
bound of ∞. However, because xi ∈ [−M,M ] by as-
sumption, Fx̄i|ȳ

(
ξ|Bδ(υ)

)
= 0 for all ξ /∈ [−M,M ] and

we can use this to achieve a finite bound, as follows. For
reasons that we will see later, let M ′ ≥ M be a (yet-to-
be-determined) more conservative bound on xi. Then,∣∣∣E[x̄i | ȳ ∈ Bδ(υ)

]
− E

[
x∗
i | y∗ ∈ Bδ(υ)

]∣∣∣
≤
∫ −M ′

−∞
Fx∗

i
|y∗
(
ξ|Bδ(υ)

)
dξ +

∫ 0

−M ′

2C√
Nϵ2

dξ

+

∫ M ′

0

2C√
Nϵ2

dξ +

∫ ∞

M ′

(
1− Fx∗

i
|y∗
(
ξ|Bδ(υ)

))
dξ

=
4M ′C√
Nϵ2

+ 2

∫ −M ′

−∞
Fx∗

i
|y∗
(
ξ|Bδ(υ)

)
dξ. (51)

To evaluate the integral in (51), note that

Fx∗
i
|y∗
(
ξ|Bδ(υ)

)
= P

{
x∗
i ≤ ξ | y∗ ∈ Bδ(υ)

}
≤ sup

y0∈Bδ(υ)

P
{
x∗
i ≤ ξ | y∗ = y0

}
= sup

y0∈Bδ(υ)

Φ

(
ξ − µxi

−ΣxiyΣ
−1
y (y0 − µy)[

1
N

(
Σxi

−ΣxiyΣ
−1
y Σyxi

)]− 1
2

)

= Φ

(
ξ − µxi − infy0∈Bδ(υ) ΣxiyΣ

−1
y (y0 − µy)[

1
N

(
Σxi −ΣxiyΣ

−1
y Σyxi

)] 1
2

)

= Φ

(
ξ − µxi

−ΣxiyΣ
−1
y (υ − µy) + δ∥ΣxiyΣ

−1
y ∥[

1
N

(
Σxi

−ΣxiyΣ
−1
y Σyxi

)] 1
2

)

where Φ(·) is the standard normal CDF. For ease of no-
tation let ξ0 = µxi

+ΣxiyΣ
−1
y (υ − µy)− δ∥ΣxiyΣ

−1
y ∥

and σ2
0 = Σxi −ΣxiyΣ

−1
y Σyxi . Then

Fx∗
i
|y∗
(
ξ|Bδ(υ)

)
≤ Φ

(ξ−ξ0
σ0

√
N
)
=

√
N√

2πσ0

∫ ξ

0

e
− (ζ−ξ0)2

2σ2
0

N
dζ

Notice that, from (51), always ξ ≤ −M ′, whereM ′ ≥ M
is yet to be determined. Choose M ′ = max{M, 1− ξ0}.
Then, for all ξ ≤ −M ′ we have

Fx∗
i
|y∗
(
ξ|Bδ(υ)

)
≤

√
N√

2πσ0

∫ ξ

0

e
− |ζ−ξ0|

2σ2
0

N
dζ =

√
2σ0√
πN

e
ξ−ξ0
2σ2

0

N

Substituting this into (51) and integrating from −∞ to
−M ′ gives∣∣∣E[x̄i | ȳ ∈ Bδ(υ)

]
− E

[
x∗
i | y∗ ∈ Bδ(υ)

]∣∣∣
≤ 4M ′C√

Nϵ2
+

2√
π

(2σ0

N

) 3
2

e
−M′+ξ0

2σ2
0

N
= O

( 1√
N

)
.

Because this is true for all i = 1, . . . , n, and ∥ · ∥ ≤√
n∥ · ∥∞, we get (44), completing the proof. ■

A number of remarks about Theorem 4.13 are in order.
First, this is the only result in this paper where we
assume independence among the subsystems, in order
to simplify the analysis. If the subsystems form a ρ-
mixing sequence, similar results can be obtained using
extensions of the Berry-Esseen theorem (see, e.g., [50])
but the analysis becomes more involved and the rates
of convergence become variable depending on the rate
at which correlations decay (e.g., n− 1

6 log n if corre-

lations decay as n− 3
2 ). Second, the L∞ nature of the

Berry-Esseen theorem (i.e., that the bound in (45) does
not depend on the set U) has forced us to move from
the singleton-conditioning in (35) to neighborhood-
conditioning in (44). To the best of our knowledge
this is not avoidable for continuous-valued conditioning
variables (see [16] for conditioning on discrete vari-
ables) but the radius of Bδ(υ) can be made sufficiently
small so that conditioning on ȳ ∈ Bδ(υ) is a good
approximation of conditioning on ȳ = υ. Finally, we
presented Theorem 4.13 for static random variables,
but its extension to dynamical systems is straightfor-
ward, with xi and yi in (43) being replaced by xi(t+1)

and yi(t) =
[
xi(t)

T wi(t)
T
]T

, respectively. Under the

same assumptions, namely, i.i.d. subsystems with uni-
formly bounded states and noises, the same conclusion
as in (44) would then hold for conditional expectation
of average states at any time t + 1 given neighborhood
(not singleton) conditions on average states and noises
at the previous time t.
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5 Linearizing Effect of Spatial Averaging on
Spatially-Embedded Dynamical Systems

5.1 Problem Formulation

While the results of Section 4 are general in many re-
spects (form of nonlinearity, noise characteristics, etc.)
they are still limited in requiring a decay of correla-
tions with the difference in two subsystems’ linear in-
dices (i.e., ϱ(|i− j|) → 0 as |i− j| → ∞). In brain net-
works that initially motivated the present work [42], e.g.,
it is well-known that correlations between neurons decay
as their distance grows [44, 48, 49], but this distance is
physical (Euclidean) rather than between linear indices.
Similarly, common forms of spatial averaging that occur
in the brain, such as those underlying functional mag-
netic resonance imaging (fMRI) or electroencephalogra-
phy (EEG), occur over neurons that are close to each
other in a physical sense rather than index-wise. There-
fore, in this section we generalize our results of Section 4
to systems where both the decay of pairwise correlations
and the domains of spatial averaging occur in Euclidean
space.

Consider the same form of nonlinear population dynam-
ics (6) but now assume that each subsystem i lies at a
location ri ∈ Rd. These locations could be determinis-
tic and fixed, or themselves be stochastic, and we will
return to this later. For the sake of generality we keep
d arbitrary, though we are often interested in d = 3. In-
stead of (7) let

xNi
(t) =

[
xj(t) : ∥ri − rj∥ ≤ τ

]
, (52)

where τ > 0 can still be arbitrarily large but finite. We
can now formulate the problem that we will tackle in
this section, which closely parallels Problem 1.
Problem 2. (Linearizing Effect of Spatial Averag-
ing on Spatially-Embedded Dynamical Systems).
Consider a heterogeneous population of nonlinear dy-
namical systems described by (6) and (52). Define the
population’s average state vector as

x̄(t) =
1

ϕ(NR)

∑
i:∥ri∥≤R

xi(t)− E[xi(t)], (53)

where, for any R > 0,

NR =
∣∣{i | ∥ri∥ ≤ R}

∣∣, (54)

and ϕ(·) is a normalization factor as in (8). Prove, under
appropriate assumptions and choice of ϕ(·), that the dy-
namics of x̄(t) becomes asymptotically linear asR → ∞.
□

The rest of this section is concerned with addressing
Problem 2. We will follow the same general steps as in

Section 4, focusing on what needs to be done differently
in order to address the challenges that arise from the
new formulation.

5.2 ρ∗-Mixing Sequences

Consider a spatially-embedded sequence of dynamical
systems as in Problem 2, which gradually grows in size
as R, NR → ∞. Regardless of how the subsystems are
enumerated, if all we know is that their correlations de-
cay with their physical distance, there is no guarantee
that the same happens if |i− j| → ∞. Therefore, to ad-
dress Problem 2 we need a different notion of mixing, as
introduced next.
Definition 5.1. (Multivariate ρ∗-mixing se-
quence). Consider a sequence of random vectors
ξ1, ξ2, · · · ∈ Rq with corresponding Euclidean positions
r1, r2, · · · ∈ Rd. For any r > 0, define

ϱ∗(r) = sup
A,B

ρ
(
σ
(
{ξi | ri ∈ A}

)
, σ
(
{ξj | rj ∈ B}

))
,

(55)

where the supremum is taken over all nonempty sets
A,B ⊂ Rd such that

inf
ri∈A, rj∈B

∥ri − rj∥ ≥ r,

and ρ(·, ·) is defined in (2). The sequence is ρ∗-mixing if

ϱ∗(r) → 0 as r → ∞. (56)

ρ∗-mixing sequences share many of the same properties
with ρ-mixing ones. For example, the notion of a residual
factor (Definition 4.2) extends naturally to ρ∗-mixing
sequences. The formal definition, for clarity, is as follows.
Definition 5.2. (Residual factor for spatially-
embedded sequences).Let ξ1, ξ2, . . . be a ρ

∗-mixing se-
quence with corresponding Euclidean positions r1, r2, . . . .
For any R > 0 let

SR =
∑

i:∥ri∥≤R

ξi,

and NR be as in (54). The function h(NR) is called a
residual factor for {ξi}∞i=1 if

lim
R→∞

1

NRh(NR)
Cov(SR) < ∞,

i.e., the limit exists and is finite. □

In what follows we also need the following result, which
parallels Lemma 4.5 and can be proved using the same
approach.
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Lemma 5.3. (Sequence formed through transfor-
mation of ρ∗-mixing sequence is ρ∗-mixing). Con-
sider a sequence of random vectors ξ1, ξ2, · · · ∈ Rq with
corresponding Euclidean positions r1, r2, · · · ∈ Rd. For
each i, let ξNi

∈ Rνi be as in (52), hi be a measurable

function from Rνi to Rk, and

ζi = h(ξNi
) ∈ Rk.

If the sequence ξ1, ξ2, . . . is ρ∗-mixing, then so is the
sequence ζ1, ζ2, . . . . □

Next we move to the CLT, which lies at the core of our
methodology. Here the main challenge lies in proving a
result similar to Proposition 3.3 for ρ∗-mixing sequences,
as tackled next. Once that is shown, generalization to
multivariate sequences will be straightforward.
Theorem 5.4. (CLT for scalar ρ∗-mixing se-
quences). Consider a scalar ρ∗-mixing sequence of
random variables ξ1, ξ2, · · · ∈ R with corresponding Eu-
clidean positions r1, r2, · · · ∈ Rd. For any R > 0, let

SR =
∑

i:∥ri∥≤R

ξi, σ2
R = Var(SR) = NRh(NR),

(57)

where NR is defined in (54) and h(NR) is a slowly-
varying function. Assume, further, that

E[ξi] = 0 and |ξi| ≤ M for all i and some M < ∞

(58a)

sup
R>0

E
[
|SγR|p

]
σp
R

< ∞ for all γ ∈ [0, 1] and some p > 2

(58b)

NR ∝ Rd, i.e., lim
R→∞

NR

Rd
= Cv for some Cv > 0.

(58c)

Then

SR

σR

d→ N (0, 1) as R → ∞. (59)

Proof. Consider the partial-sum stochastic process

WR(γ) =
S
γ

1
d R

σR
, for all γ ∈ [0, 1].

In what follows we will prove the weak convergence of
WR(γ) to the standard Brownian process W (γ), from
which the statement of the theorem follows as a special
case. By (58a) we have

E[WR(γ)] = 0, (60)

and by (57) and (58c) we get

lim
R→∞

E
[
W 2

R(γ)
]
= lim

R→∞

1

σ2
R
E
[
S2

γ
1
d R

]
= lim

R→∞

N
γ

1
d R

h
(
N

γ
1
d R

)
NRh(NR)

= lim
R→∞

N
γ

1
d R

γRd
· γ · R

d

NR
·
h
(
N

γ
1
d R

)
h(NR)

= γ, (61)

where in the last equality we used the fact that
limR→∞ h

(
Nγ1/dR

)
/h(NR) = 1 by the uniform conver-

gence of slowly-varying functions [5, Thm. 1.2.1].

Further, by (58b) the collection of random variables,

{
W 2

R(γ) | R ∈ R
}

(62)

is uniformly integrable. To prove the weak convergence
ofWR(γ) toW (γ), we need to show thatWR(γ) satisfies
two more conditions. The first is tightness, namely, that
for any ϵ, η > 0 there exists δ > 0 such that for all
|s− t| < δ and all sufficiently large R,

P
(
|WR(s)−WR(t)| ≥ ϵ

)
≤ η. (63)

To show this, note that by Markov’s inequality,

P
(
|WR(s)−WR(t)| ≥ ϵ

)
≤

E
[
|WR(s)−WR(t)|

]
ϵ

.

(64)

Further, from (58c) for sufficiently largeRwe haveNR ≃
CvRd and hence

∣∣WR(s)−WR(t)
∣∣ =

∣∣∣S
s

1
d R

− S
t
1
d R

∣∣∣
σR

≤

∣∣∣N
s

1
d R

−N
t
1
d R

∣∣∣
σR

M ≲
CvRdδ

σR
M

δ→0−−−→ 0.

Therefore,
∣∣WR(s) − WR(t)

∣∣ → 0 as δ → 0 which, to-
gether with (64) ensures (63).

The last property ofWR(γ) that we need to show is that
of asymptotically independent increments, namely, that
for all

0 ≤ s1 ≤ t1 < s2 ≤ t2 < · · · < sk ≤ tk ≤ 1
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and for all linear Borel sets H1, . . . ,Hk the difference

P
(
WR(tℓ)−WR(sℓ) ∈ Hℓ, ℓ = 1, . . . , k

)
−

k∏
ℓ=1

P
(
WR(tℓ)−WR(sℓ) ∈ Hℓ

)
(65)

converges to 0 asR → ∞. For any two σ-algebras A and
B, let

α(A,B) = sup
A∈A, B∈B

∣∣∣P(A ∩B)− P(A)P(B)
∣∣∣,

and let Eℓ be the event {WR(tℓ) − WR(sℓ) ∈ Hℓ} for
any ℓ = 1, . . . , k. Then, by definition,∣∣∣P(Eℓ ∩ Eℓ−1

)
− P

(
Eℓ

)
P
(
Eℓ−1

)∣∣∣ (66)

≤ α

(
σ
({

ξi
∣∣ s 1

d

ℓ R < ||ri|| ≤ t
1
d

ℓ R
})

,

σ
({

ξj
∣∣ s 1

d

ℓ−1R < ||rj || ≤ t
1
d

ℓ−1R
}))

.

Furthermore, from [7, Prop 3.11], for any two σ-algebras
A and B,

α(A,B) ≤ 1

4
ρ(A,B). (67)

Therefore, combining (66), (67), and (56),∣∣∣P(Eℓ ∩ Eℓ−1

)
− P

(
Eℓ

)
P
(
Eℓ−1

)∣∣∣ ≤ 1

4
ϱ∗(rℓ)

where rℓ = R
(
s

1
d

ℓ − t
1
d

ℓ−1

)
. Therefore, as R → ∞ so does

rℓ, and hence∣∣∣P(Eℓ ∩ Eℓ−1

)
− P

(
Eℓ

)
P
(
Eℓ−1

)∣∣∣→ 0 as R → ∞.

Then, by induction,

∣∣∣∣P( k⋂
ℓ=1

Eℓ

)
−

k∏
ℓ=1

P
(
Eℓ

)∣∣∣∣→ 0 as R → ∞,

which is the same as (65).

Put together, it follows from (60), (61), (62), (63),
and (65) that WR(γ) satisfies all the assumptions
of [4, Thm 19.2], and hence

WR(γ)
d→ W (γ) as R → ∞.

Then, setting λ = 1 we get

WR(1) =
SR

σR

d→ W (1) = N (0, 1) as R → ∞,

which completes the proof. ■

A minor difference between Theorem 5.4 and Propo-
sition 3.3 is the difference between assumptions (58b)
and (4b). The latter are both technical assumptions
needed to prove uniform integrability of families of par-
tial sum processes such as that in (62), which in turn
prevents pathological cases where some probability mass
gradually drifts to infinity as N or R → ∞. Both as-
sumptions are sufficient but not necessary for uniform in-
tegrability, neither is uniformly stronger or weaker than
the other, and either can be replaced by the direct (but
perhaps more opaque) assumption of uniform integra-
bility.

Similar to Section 4, we next generalize Theorem 5.4 to
multivariate sequences. The proof technique is the same
as that of Theorem 4.6 and hence omitted.
Theorem 5.5. (Multivariate CLT for ρ∗-mixing
sequence). Consider a ρ∗-mixing sequence of random
vectors ξ1, ξ2, · · · ∈ Rq with corresponding Euclidean po-
sitions r1, r2, · · · ∈ Rd satisfying (58c). For any R > 0
let SR =

∑
i:∥ri∥≤R ξi, NR be as in (54), h(NR) be

a slowly-varying residual factor for {ξi}∞i=1, and Σ∗
ξ̄ =

limR→∞ Cov(SR)/NRh(NR). Assume, further, that

E[ξi] = 0 and ∥ξi∥ ≤ M for all i and some M < ∞,

sup
R>0

E
[
|θTSγR|p

][
θTCov(SR)θ

] p
2

< ∞ for all θ ∈ Rq, γ ∈ [0, 1],

and some p > 2. Then,

ξ̄ =
1√

NRh(NR)

∑
i:∥ri∥≤R

ξi
d−→ N (0,Σ∗

ξ̄)

as R → ∞. □

5.3 Asymptotic Linearity Under Spatial Averaging

Theorem 5.5 provides the basis that we need for solving
Problem 2. However, note that we have so far assumed,
for simplicity, that the Euclidean locations {ri}∞i=1 are
deterministic and fixed–e.g., at the vertices of a lattice–
whereas in reality spatially-embedded subsystems are
often distributed randomly over space. Therefore, before
getting to the main result of this section, we prove the
following lemma showing that our only requirement on
the subsystems’ locations, i.e., assumption (58c), is still
satisfied with probability 1 in a proper stochastic setting.
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Lemma 5.6. (Growth rate of number of subsys-
tems distributed according to Poisson point pro-
cess). Consider a sequence of dynamical subsystems the
locations {ri}∞i=1 of which are distributed according to a
homogeneous Poisson point process with rate λ on Rd.
For any R > 0, let (the random variable) NR be as
in (54). Then

P
(

lim
R→∞

NR

Rd
= λCv

)
= 1, (68)

where Cv = π
d
2

Γ(1+ d
2 )

is the volume of the unit ball in Rd.

Proof. For simplicity of notation, let VR = CvRd be the
volume of a ball with radius R, and for any r > 0 let

R(r) =
( r

Cv

) 1
d

.

Clearly VR(r) = r. For all 0 ≤ r0 < r1 < · · · < rk, define
the annuli

Aℓ =
{
r ∈ Rd

∣∣ R(rℓ−1) < ∥r∥ ≤ R(rℓ)
}
,

and let |Aℓ| be the volume of Aℓ. Because Aℓ’s are dis-
joint, by definition [33, Def. 3.1],

NR(rℓ) −NR(rℓ−1), ℓ = 1, . . . , k

are mutually independent Poisson-distributed random
variables with rates

λ|Aℓ| = λ
(
VR(rℓ) − VR(rℓ−1)

)
= λ

(
rℓ − rℓ−1

)
.

Therefore, NR(r), r > 0 is a standard Poisson point pro-
cess with rate λ on the positive real line. Let δ1, δ2, . . .
be the i.i.d. inter-arrival times of this standard Poisson
process, and tℓ = δ1 + · · ·+ δℓ. Each δℓ is exponentially
distributed with rate λ, and hence by the strong law of
large numbers,

tℓ
ℓ
=

δ1 + · · ·+ δℓ
ℓ

a.s.→ 1

λ
as ℓ → ∞. (69)

For any r ∈ [tℓ, tℓ+1), by definition NR(r) = ℓ and thus

ℓ

tℓ+1
≤

NR(r)

r
≤ ℓ

tℓ
. (70)

By (69), as r → ∞ (and thus ℓ → ∞) both sides of (70)
converge to λ a.s., and thus

NR(r)

r

a.s.→ λ as r → ∞. (71)

The statement of the theorem then follows by replacing
r = CvR(r)d in (71) and changing the limiting variable
from r to R. ■

Lemma 5.6 allows us to restate the preceding CLTs for
ρ∗-mixing sequences with fixed Euclidean locations for
the case where the locations are Poisson distributed.
These restatements are straightforward and hence omit-
ted. Instead, we proceed to use the combination of
Lemma 5.6 and the preceding CLTs to solve Problem 2.
The following is the parallel to Assumption 4.7 for
spatially-embedded systems.
Assumption 5.7. (Updated assumptions for
spatially-embedded systems). Consider the popula-
tion of dynamical systems described by (6) and (52) and
let yi(t), zi(t), and NR be as in (31), (32), and (54),
respectively. We make the following assumptions.

(A1∗) E[wi(t)] = 0 and ∥wi(t)∥ ≤ C a.s. for all i, t and
some C < ∞.

(A2∗) For all θ ̸= 0, t ≥ 0, and γ ∈ [0, 1] and some p > 2,

sup
R>0

E
[∣∣θT ∑

i:∥ri∥≤γR zi(t)
∣∣p][

θTCov
(∑

i:∥ri∥≤R zi(t)
)
θ
] p

2

< ∞.

(A3∗) Same as Assumption (A3).
(A4∗) Same as Assumption (A4).
(A5∗) For all t, the sequence of random vectors {yi(t)}∞i=1

is ρ∗-mixing with a slowly-varying residual factor
h(NR). □

We are now ready to state the main result of this sec-
tion, as follows. The proof is similar to the proof of The-
orem 4.8 and hence omitted.
Theorem 5.8. (Linearizing effect of spatial av-
eraging on spatially-embedded populations of
dynamical systems). Consider the population of dy-
namical systems described by (6) and (52), and assume
that Assumptions (A1∗)-(A5∗) as well as (58c) hold.
Define the population average variables x̄(t) and w̄(t)

as in (53), let ȳ(t) =
[
x̄(t)T w̄(t)T

]T
, and assume

that limR→∞ Cov
(
x̄(t + 1), ȳ(t)

)
exists. Then, for all

ξ ∈ Rn,ω ∈ Rm,

E
[
x̄(t+ 1)

∣∣∣∣
[
x̄(t)

w̄(t)

]
=

[
ξ

ω

]]
R→∞−−−−→A∞(t)ξ +B∞(t)ω

(72)

where A∞(t) and B∞(t) are defined in (36). Further-
more, if the subsystem locations {ri}∞i=1 are distributed
according to a homogeneous Poisson point process on Rd,
(72) holds with probability 1. □

As we noted in the Introduction,the present work was
motivated by our empirical observations of macro-
scopic linearity in brain networks. Theorem 5.8 now
rigorously explains these observations, and highlights
the key roles of spatial averaging that is inherent in
macroscopic recordings such as electroencephalography
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(EEG) [14] and functional magnetic resonance imaging
(fMRI) [13], as well as the weak and decaying correla-
tions that have long been observed between biological
neurons [44, 48, 49]. Whether and to what extent large-
scale complex networks in other domains meet the
assumptions of this theorem, and are hence bound to
follow its consequent macroscopic linearity, remains an
interesting topic of inquiry for future research.

6 Conclusions

In this article we developed a theoretical framework to
understand the linearity of spatially averaged dynam-
ics in heterogeneous populations of nonlinear networked
dynamical systems. This research was motivated by sev-
eral observations of linear behavior at the macroscopic
level in biological and artificial neural systems, as well
as in-silico observations that nonlinear systems nearly
universally exhibit (more) linear dynamics when sub-
jected to spatial averaging. To our knowledge, this work
is the first to formalize these observations into a unified
theoretical framework and support them with rigorous
mathematical analysis. By building on and extending
the celebrated central limit theorem and the theory of
mixing sequences, we proved that averaging has a strong
and robust linearizing effect that holds for almost any
form of microscopic nonlinearity, noise distribution, and
network connectivity patterns, as long as pairwise corre-
lations decay with some notion of distance between mi-
croscopic subsystems. We proved this result in two gen-
eral settings, one where pairwise correlations decay with
the distance |i − j| between subsystems’ linear indices,
and the other when pairwise correlations decay with the
Euclidean distance ∥ri − rj∥ between the physical loca-
tions of spatially-embedded subsystems. These results
were further extended to time-invariant limit dynamics,
finite-sample averaging with rates of convergence, and
networks of spatially-embedded subsystems with ran-
dom locations. Overall, our results provide significant
insights into the macroscopic behavior of large-scale sys-
tems, and lay a robust theoretical foundation for future
research across various domains.
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[43] Martin Raič. A multivariate berry–esseen theorem with
explicit constants. Bernoulli, 25(4A):2824–2853, 2019.

[44] Robert Rosenbaum, Matthew A Smith, Adam Kohn,
Jonathan E Rubin, and Brent Doiron. The spatial structure
of correlated neuronal variability. Nature neuroscience,
20(1):107–114, 2017.

[45] Omid G Sani, Hamidreza Abbaspourazad, Yan T Wong,
Bijan Pesaran, and Maryam M Shanechi. Modeling
behaviorally relevant neural dynamics enabled by preferential
subspace identification. Nature Neuroscience, 24(1):140–149,
2021.

[46] Omid G Sani, Bijan Pesaran, and Maryam M Shanechi.
Dissociative and prioritized modeling of behaviorally relevant
neural dynamics using recurrent neural networks. Nature
neuroscience, 27(10):2033–2045, 2024.

[47] Marc-Andre Schulz, Thomas Yeo, Joshua Vogelstein, Janaina
Mourao-Miranada, Jakob Kather, Konrad Kording, Blake A
Richards, and Danilo Bzdok. Deep learning for brains?:
Different linear and nonlinear scaling in uk biobank brain
images vs. machine-learning datasets. BioRxiv, page 757054,
2019.

[48] Matthew A Smith and Adam Kohn. Spatial and temporal
scales of neuronal correlation in primary visual cortex.
Journal of Neuroscience, 28(48):12591–12603, 2008.

[49] Matthew A Smith and Marc A Sommer. Spatial and temporal
scales of neuronal correlation in visual area v4. Journal of
Neuroscience, 33(12):5422–5432, 2013.

[50] Xuejun J Wang and Sh H Hu. The berry–esseen bound
for ρ-mixing random variables and its applications in
nonparametric regression model. Theory of Probability & Its
Applications, 63(3):479–499, 2019.

[51] Hugh R Wilson and Jack D Cowan. Excitatory and
inhibitory interactions in localized populations of model
neurons. Biophysical journal, 12(1):1–24, 1972.

[52] Yuxiao Yang, Shaoyu Qiao, Omid G Sani, J Isaac Sedillo,
Breonna Ferrentino, Bijan Pesaran, and MaryamM Shanechi.
Modelling and prediction of the dynamic responses of large-
scale brain networks during direct electrical stimulation.
Nature biomedical engineering, 5(4):324–345, 2021.

[53] Yuxiao Yang, Omid G Sani, Edward F Chang, and
Maryam M Shanechi. Dynamic network modeling and
dimensionality reduction for human ecog activity. Journal of
neural engineering, 16(5):056014, 2019.

[54] Shenqin Yao, Quanxin Wang, Karla E Hirokawa, Benjamin
Ouellette, Ruweida Ahmed, Jasmin Bomben, Krissy Brouner,

18



Linzy Casal, Shiella Caldejon, Andy Cho, et al. A whole-
brain monosynaptic input connectome to neuron classes in
mouse visual cortex. Nature Neuroscience, 26(2):350–364,
2023.

[55] Chengxi Zang, Peng Cui, and Christos Faloutsos. Beyond
sigmoids: The nettide model for social network growth, and
its applications. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data
mining, pages 2015–2024, 2016.

19


	Introduction
	Notation
	Preliminaries: Mixing Sequences
	Linearizing Effect of Spatial Averaging on Sequences of Dynamical Systems
	Problem Formulation
	Multivariate -Mixing Sequences
	Asymptotic Linearity Under Spatial Averaging
	Time-Invariant Limit Dynamics
	Rate of Convergence to Linearity

	Linearizing Effect of Spatial Averaging on Spatially-Embedded Dynamical Systems
	Problem Formulation
	*-Mixing Sequences
	Asymptotic Linearity Under Spatial Averaging

	Conclusions
	Acknowledgements
	References

